Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.657
Filtrar
2.
Commun Biol ; 7(1): 519, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698198

RESUMEN

DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.


Asunto(s)
Cromosomas Bacterianos , Replicación del ADN , Vibrio , Vibrio/genética , Cromosomas Bacterianos/genética , Genoma Bacteriano , Origen de Réplica , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
3.
Mol Biol Cell ; 35(5): ar68, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568781

RESUMEN

The ability of bacteria to maintain chromosomal integrity throughout their life cycle is crucial for survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. Cells with tipN knocked out display subtle segregation defects of the centromere-like region parS. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first confirm that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.


Asunto(s)
Caulobacter crescentus , Caulobacter crescentus/genética , Segregación Cromosómica , Cromosomas Bacterianos/genética , Replicación del ADN , Centrómero , Proteínas Bacterianas
4.
Nat Commun ; 15(1): 3460, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658616

RESUMEN

DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial species, driving the hypothesis that a physical linker may tether them together. However, replisome splitting has also been reported in many of the same species, leaving the principles behind replisome organization a long-standing puzzle. Here, by tracking the replisome ß-clamp subunit in live Caulobacter crescentus, we find that rapid DNA segregation can give rise to a second focus which resembles a replisome, but does not replicate DNA. Sister replisomes can remain colocalized, or split apart to travel along DNA separately upon disruption of chromosome inter-arm alignment. Furthermore, chromosome arm-specific replication-transcription conflicts differentially modify replication speed on the two arms, facilitate the decoupling of the two replisomes. With these observations, we conclude that the dynamic chromosome organization flexibly shapes the organization of sister replisomes, and we outline principles which can help to reconcile previously conflicting models of replisome architecture.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Cromosomas Bacterianos , Replicación del ADN , Caulobacter crescentus/metabolismo , Caulobacter crescentus/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Segregación Cromosómica
5.
mBio ; 15(5): e0037424, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564687

RESUMEN

DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE: Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.


Asunto(s)
Antibacterianos , Cromosomas Bacterianos , Reparación del ADN , Proteínas de Escherichia coli , Escherichia coli , Fluoroquinolonas , Fluoroquinolonas/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
6.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652748

RESUMEN

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
7.
Curr Microbiol ; 81(5): 122, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530471

RESUMEN

The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transcriptoma , Cromosomas Bacterianos/metabolismo , Estructuras Cromosómicas/metabolismo , Regulación Bacteriana de la Expresión Génica
8.
J Antimicrob Chemother ; 79(5): 1014-1018, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530861

RESUMEN

BACKGROUND: The Acinetobacter baumannii isolate called SMAL, previously used to determine the structures of capsular polysaccharide and lipooligosaccharide, was recovered in Pavia, Italy in 2002 among the collection of aminoglycoside-resistant isolates designated as SMAL type. This type was later called the Italian clone, then ST78. ST78 isolates are now widely distributed. OBJECTIVES: To establish the resistance gene complement and the location and structure of acquired resistance regions in early members of the Italian/ST78 clone. METHODS: The draft genome of SMAL2002 was assembled from Illumina MiSeq reads. Contigs containing resistance genes were joined and located in the chromosome using PCR with custom primers. The resistance profile was determined using disc diffusion. RESULTS: SMAL2002 is an ST78A isolate and includes three aminoglycoside resistance genes, aadB (gentamicin, kanamycin, tobramycin) aphA1 (kanamycin, neomycin) and aac(6')-Ian (amikacin, kanamycin, tobramycin). The aadB gene cassette is incorporated at a secondary site in a relative of the aphA1-containing, IS26-bounded pseudo-compound transposon, PTn6020. The aac(6')-Ian gene is in an adjacent IS26-bounded structure that includes sul2 (sulphonamide) and floR (florfenicol) resistance genes. The two pseudo-compound transposons overlap and are in the chromosomal hutU gene flanked by an 8 bp target site duplication. Although aac(6')-Ian was not noticed previously, the same genes and structures were found in several available draft genomes of early ST78A isolates. CONCLUSIONS: This study highlights the importance of correlating resistance profiles with resistance gene content. The location of acquired resistance genes in the SMAL2002 chromosome represents the original location in the ST78A lineage of ST78.


Asunto(s)
Acinetobacter baumannii , Aminoglicósidos , Antibacterianos , Cromosomas Bacterianos , Farmacorresistencia Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Aminoglicósidos/farmacología , Italia , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Farmacorresistencia Bacteriana/genética , Humanos , Islas Genómicas/genética , Elementos Transponibles de ADN/genética , Genes Bacterianos/genética , Análisis de Secuencia de ADN , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/microbiología , Reacción en Cadena de la Polimerasa , Genoma Bacteriano , ADN Bacteriano/genética
9.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38534122

RESUMEN

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Asunto(s)
Antibacterianos , Cromosomas Bacterianos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Mutación , Plásmidos , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Aptitud Genética , Ciprofloxacina/farmacología , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistencia Bacteriana/genética , Estreptomicina/farmacología
10.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548820

RESUMEN

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Asunto(s)
Bacillus subtilis , Segregación Cromosómica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Segregación Cromosómica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Replicación del ADN/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Origen de Réplica
11.
J Bacteriol ; 206(3): e0021123, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38358278

RESUMEN

Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.


Asunto(s)
Escherichia coli , Ribosomas , Escherichia coli/genética , Ribosomas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN/metabolismo , ARN Mensajero/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Elife ; 122024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315099

RESUMEN

Structural maintenance of chromosomes (SMC) complexes share conserved structures and serve a common role in maintaining chromosome architecture. In the bacterium Escherichia coli, the SMC complex MukBEF is necessary for rapid growth and the accurate segregation and positioning of the chromosome, although the specific molecular mechanisms involved are still unknown. Here, we used a number of in vivo assays to reveal how MukBEF controls chromosome conformation and how the MatP/matS system prevents MukBEF activity. Our results indicate that the loading of MukBEF occurs preferentially on newly replicated DNA, at multiple loci on the chromosome where it can promote long-range contacts in cis even though MukBEF can promote long-range contacts in the absence of replication. Using Hi-C and ChIP-seq analyses in strains with rearranged chromosomes, the prevention of MukBEF activity increases with the number of matS sites and this effect likely results from the unloading of MukBEF by MatP. Altogether, our results reveal how MukBEF operates to control chromosome folding and segregation in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética , Cromosomas Bacterianos/genética , Origen de Réplica , Proteínas Cromosómicas no Histona/genética , Cromosomas , Segregación Cromosómica
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385874

RESUMEN

The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.


Asunto(s)
Bacterias , Estructuras Cromosómicas , Células Procariotas , Cromosomas Bacterianos/genética , Algoritmos , Escherichia coli/genética
14.
Nat Struct Mol Biol ; 31(3): 489-497, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177686

RESUMEN

Transcription generates local topological and mechanical constraints on the DNA fiber, leading to the generation of supercoiled chromosome domains in bacteria. However, the global impact of transcription on chromosome organization remains elusive, as the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~5-10 kb). Here we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units. We show that transcriptional units form discrete three-dimensional transcription-induced domains that impose mechanical and topological constraints on their neighboring sequences at larger scales, modifying their localization and dynamics. These results show that transcriptional domains constitute primary building blocks of bacterial chromosome folding and locally impose structural and dynamic constraints.


Asunto(s)
Cromosomas Bacterianos , Cromosomas , Cromosomas Bacterianos/genética , ADN
15.
Nature ; 626(7999): 661-669, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267581

RESUMEN

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Asunto(s)
Bacterias , Replicación del ADN , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Transcripción Genética , Bacterias/genética , Replicación del ADN/genética , Dosificación de Gen/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Operón/genética , Análisis de Secuencia de ARN , Transcripción Genética/genética , Cromosomas Bacterianos/genética
16.
J Vis Exp ; (203)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251745

RESUMEN

Temperate phages are found integrated as prophages in the majority of bacterial genomes. Some prophages are cryptic and fixed in the bacterial chromosome, but others are active and can be triggered into a replicative form either spontaneously or by exposure to inducing factors. Prophages are commonly associated with the ability to confer toxin production or other virulence-associated traits on their host cell. More recent studies have shown they can play a much bigger role in altering the physiology of their hosts. The technique described here has enabled us to investigate how prophages affect gene expression in the opportunistic bacterium Pseudomonas aeruginosa. In this work, the growth of the wild-type P. aeruginosa strain PAO1 was compared with that of isogenic lysogens carrying different combinations of prophages from the Liverpool Epidemic Strain (LES) LESB58. In a lysogen culture, a proportion of bacterial cells will be supporting lytic bacteriophage replication (spontaneous induction) with a high level of expression per cell of late phage genes, such as those associated with the assembly of phage particles, thus masking the low-level gene expression associated with lysogen-restricted gene expression. The impact of spontaneous induction can thus obscure prophage gene expression across a lysogen population. Growth profiling experiments were used to identify spontaneous induction, which was minimal during the early exponential growth phase. This study reports how to prepare sample cultures during the early exponential growth phase and how to set up adequate controls despite low cell numbers. These protocols ensure the reliable and reproducible comparison of wild-type and lysogenic bacteria under various conditions, thus improving the transcriptomic profiling of prophage genomes and aiding in the identification of previously unrecognized prophage functions.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Perfilación de la Expresión Génica , Técnicas de Tipificación Bacteriana , Recuento de Células , Cromosomas Bacterianos
17.
Sci Rep ; 14(1): 139, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167921

RESUMEN

Cells orchestrate the action of various molecules toward organizing their chromosomes. Using a coarse-grained computational model, we study the compaction of bacterial chromosomes by the cross-linking protein H-NS and cellular crowders. In this work, H-NS, modeled as a mobile "binder," can bind to a chromosome-like polymer with a characteristic binding energy. The simulation results reported here clarify the relative role of biomolecular crowding and H-NS in condensing a bacterial chromosome in a quantitative manner. In particular, they shed light on the nature and degree of crowder and H-NS synergetics: while the presence of crowders enhances H-NS binding to a chromosome-like polymer, the presence of H-NS makes crowding effects more efficient, suggesting two-way synergetics in chain compaction. Also, the results show how crowding effects promote clustering of bound H-NS. For a sufficiently large concentration of H-NS, the cluster size increases with the volume fraction of crowders.


Asunto(s)
Polímeros , Proteínas , Polímeros/química , Simulación por Computador , Cromosomas Bacterianos/genética
18.
Methods Mol Biol ; 2751: 95-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265712

RESUMEN

Epigenetic regulation as a means for bacterial adaptation is receiving increasing interest in the last decade. Significant efforts have been directed towards understanding the mechanisms giving raise to phenotypic heterogeneity within bacterial populations and its adaptive relevance. Phenotypic heterogeneity mostly refers to phenotypic variation not linked to genetic differences nor to environmental stimuli. Recent findings on the relevance of phenotypic heterogeneity on some bacterial complex traits are causing a shift from traditional assays where bacterial phenotypes are defined by averaging population-level data, to single-cell analysis that focus on bacterial individual behavior within the population. Fluorescent labeling is a key asset for single-cell gene expression analysis using flow cytometry, fluorescence microscopy, and/or microfluidics.We previously described the generation of chromosome-located transcriptional gene fusions to fluorescent reporter genes using the model bacterial plant pathogen Pseudomonas syringae. These fusions allow researchers to follow variation in expression of the gene(s) of interest, without affecting gene function. In this report, we improve the analytic power of the method by combining such transcriptional fusions with constitutively expressed compatible fluorescent reporter genes integrated in a second, neutral locus of the bacterial chromosome. Constitutively expressed fluorescent reporters allow for the detection of all bacteria comprising a heterogeneous population, regardless of the level of expression of the concurrently monitored gene of interest, thus avoiding the traditional use of stains often incompatible with samples from complex contexts such as the leaf.


Asunto(s)
Epigénesis Genética , Pseudomonas syringae , Análisis de Expresión Génica de una Sola Célula , Cromosomas Bacterianos , Microscopía Fluorescente , Colorantes
19.
Biophys J ; 123(4): 502-508, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243596

RESUMEN

Cell dimensions of rod-shaped bacteria such as Escherichia coli are connected to mass growth and chromosome replication. During their interdivision cycle (τ min), cells enlarge by elongation only, but at faster growth in richer media, they are also wider. Changes in width W upon nutritional shift-up (shortening τ) occur during the division process. The elusive signal directing the mechanism for W determination is likely related to the tightly linked duplications of the nucleoid (DNA) and the sacculus (peptidoglycan), the only two structures (macromolecules) existing in a single copy that are coupled, temporally and spatially. Six known parameters related to the nucleoid structure and replication are reasonable candidates to convey such a signal, all simple functions of the key number of replication positions n(=C/τ), the ratio between the rates of growth (τ-1) and of replication (C-1). The current analysis of available literature-recorded data discovered that, of these, nucleoid complexity NC[=(2n-1)/(n×ln2)] is by far the most likely parameter affecting cell width W. The exceedingly high correlations found between these two seemingly unrelated measures (NC and W) indicate that coupling between them is of major importance to the species' survival. As an exciting corollary, to the best of our knowledge, a new, indirect approach to estimate DNA replication rate is revealed. Potential involvement of DNA topoisomerases in W determination is also proposed and discussed.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , División Celular , Replicación del ADN , Proteínas de Escherichia coli/metabolismo , Bacterias/genética , Cromosomas Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo
20.
J Chem Theory Comput ; 20(4): 1673-1688, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37083406

RESUMEN

The chromosome of archetypal bacteria E. coli is known for a complex topology with a 4.6 × 106 base pairs (bp) long sequence of nucleotides packed within a micrometer-sized cellular confinement. The inherent organization underlying this chromosome eludes general consensus due to the lack of a high-resolution picture of its conformation. Here we present our development of an integrative model of E. coli at a 500 bp resolution (https://github.com/JMLab-tifrh/ecoli_finer), which optimally combines a set of multiresolution genome-wide experimentally measured data within a framework of polymer based architecture. In particular the model is informed with an intragenome contact probability map at 5000 bp resolution derived via the Hi-C experiment and RNA-sequencing data at 500 bp resolution. Via dynamical simulations, this data-driven polymer based model generates an appropriate conformational ensemble commensurate with chromosome architectures that E. coli adopts. As a key hallmark of the E. coli chromosome the model spontaneously self-organizes into a set of nonoverlapping macrodomains and suitably locates plectonemic loops near the cell membrane. As novel extensions, it predicts a contact probability map simulated at a higher resolution than precedent experiments and can demonstrate segregation of chromosomes in a partially replicating cell. Finally, the modular nature of the model helps us devise control simulations to quantify the individual role of key features in hierarchical organization of the bacterial chromosome.


Asunto(s)
Cromosomas Bacterianos , Escherichia coli , Escherichia coli/genética , Cromosomas Bacterianos/genética , Cromosomas , Conformación Molecular , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...